An Operator Extension of C̆ebys̆ev Inequality

نویسندگان

  • Hamid Reza Moradi
  • Mohsen Erfanian Omidvar
چکیده

Some operator inequalities for synchronous functions that are related to the c̆ebys̆ev inequality are given. Among other inequalities for synchronous functions it is shown that ‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max {∥∥φ (f2 (A))− φ (f (A))∥∥ , ∥∥φ (g2 (A))− φ (g (A))∥∥} whereA is a self-adjoint and compact operator on B (H ), f, g ∈ C (sp (A)) continuous and non-negative functions and φ : B (H ) → B (H ) be a n-normalized bounded positive linear map. In addition, by using the concept of quadruple D-synchronous functions which is generalizes the concept of a pair of synchronous functions, we establish an inequality similar to c̆ebys̆ev inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

An extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel

In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017